bgscience@idbg.ru
+7 495 648 62 41 Russia, 127015, Moscow, Novodmitrovskaya st. 5A (b. 7)
Menu
  • BIBLIO-GLOBUS
    • About
  • Journals
    • Russian Journal of Entrepreneurship
    • Creative Economy
    • Scholarly Communication Review
    • Russian Journal of Retail Management
    • Leadership and Management
    • Public-Private Partnership
    • Global Markets and Financial Engineering
    • Russian Journal of Housing Research
    • Food Policy and Security
    • Russian Journal of Labor Economics
    • Russian Journal of Innovation Economics
    • Journal of Economics, Entrepreneurship and Law
    • Russian Journal of Humanistic Psychology
  • BIBLIO-GLOBUS fiction

Switch to Russian:to Russian

Joint analysis as an assessment method of consumer preferences and its implication for effective advertisement


Lysenko M.Yu., Schekoldin V.Yu.
(about the authors)

Lysenko Mikhail Yurevich – (Novosibirsk State Technical University)

Schekoldin Vladislav Yurevich – (Novosibirsk State Technical University)

Published in:
Russian Journal of Entrepreneurship
– Volume 18, Number 21 (November 2017)

JEL classification: D11, M31, M37

Keywords: advertisement, consumer behavior, consumer preferences assessment, joint analysis, joint selection method


Citation:
Lysenko M.Yu., Schekoldin V.Yu. (2017). Joint analysis as an assessment method of consumer preferences and its implication for effective advertisement. Russian Journal of Entrepreneurship, 18(21), 3275-3288. doi: 10.18334/rp.18.21.38504


Share:

Abstract:

The paper considers a concept of joint analysis as one of modern tools for studying consumer preferences. We compare the main types of joint analysis and present the general approach to the analysis. We consider areas of activities where the joint analysis can be applied. We show its implication for advertisement optimization through joint selection method and multiple logit-model for parameters estimation. The advertisement obtained as a result of analysis was used during an advertisement campaign. Tracking changes of key indicators allowed assessing the impact of joint analysis.








References:
Aizaki H., Nishimura K. (2008). Design and analysis of choice experiments using R: a brief introduction Agricultural Information Research. 17 (2). 86-94.
Berezhnov G.V. (2005). Kreativnaya deyatelnost v marketinge [Creative activity in marketing]. Russian Entrepreneurship. 6 (9). 64-68. (in Russian).
Cherenkov A.A. (1999). Primenenie metoda sovmestnogo analiza v marketingovyh issledovaniyakh [The application of the method of joint analysis in marketing research]. Marketing i marketingovye issledovaniya. (2). (in Russian).
Esh T. (2011). Povyshenie effektivnosti Internet-reklamy. Optimizatsiya tselevyh stranits dlya uluchsheniya konversii [Efficiency increase in Internet advertising. Optimizing landing pages to improve conversion] M.: Mann, Ivanov i Ferber. (in Russian).
Gofman A., Moskowitz H.R., Bevolo M., Mets T. (2010). Decoding consumers perceptions of premium products with rule-developing experimentation Journal of Consumer Marketing. (27(5)). 425-436.
Gofman A., Moskowitz H.R., Mets T. (2009). Integrating science into web design: Consumer driven website optimization Journal of Consumer Marketing. (6(4)). 286-298.
Hauber B. (2016). Statistical Methods for the Analysis of Discrete Choice Experiments: A Report of the ISPOR Conjoint Analysis Good Research Practices Task Force Value in Health. 19 300-315.
Hosmer D., Lemeshow S., Sturdivant R. (2013). Applied Logistic Regression New York: Wiley.
Kaushik A. Experimentation and testing: a primerKaushik. Retrieved October 28, 2017, from https://www.kaushik.net/avinash/experimentation-and-testing-a-primer/
Kozhushko O.A., Churkin I., Ageev A. i dr. (2015). Internet-marketing i digital-strategii. Printsipy effektivnogo ispolzovaniya [Internet marketing and digital-strategy. Principles of effective use] Novosibirsk: RITs NGU. (in Russian).
Malhotra N.K. (2009). Marketing Research Pearson.
Moskowitz H.R., GofmanA. (2007). Selling blue elephants Pearson Education.
Schreiber S., Baier D. (2015). Multivariate Landing Page Optimization Using Hierarchical Bayes Choice-Based Conjoint Discover. 465-474.
Sheffe G. (1980). Dispersionnyy analiz [Dispersion analysis] M.: Nauka. (in Russian).
Timofeev V.S., Faddeenkov A.V., Schekoldin V.Yu. (2013). Ekonometrika [Econometrics] Novosibirsk : Izd-vo NGTU. (in Russian).
Timokhina G.S., Kulikova E.S. (2015). Marketingovye issledovaniya povedeniya globalnyh potrebiteley [Marketing researches of global consumer behavior]. Russian Entrepreneurship. 16 (15). 2397-2406. (in Russian). doi: 10.18334/rp.16.15.561.
Tsoy M.E., Schekoldin V.Yu. (2014). Sovremennye metody issledovaniy v Marketinge [Modern methods of research in Marketing]. Marketing. (2). 19-32. (in Russian).
Tsoy M.E., Schekoldin V.Yu. (2015). Razrabotka novogo assortimenta produktsii na osnove metoda RDE [Development of a New Range of Products on the Basis of RDE-method]. Practical Marketing. (4(218)). 17-22. (in Russian).
Tsoy M.E., Schekoldin V.Yu. (2016). Otsenka effektivnosti tizernoy reklamy [Efficiency Estimation of Teaser Advertising ]. Practical Marketing. (7(233)). 27-33. (in Russian).
Zakharova T.A., Kutlaliev A.Kh. (2009). Metod sovmestnogo analiza kak instrument izucheniya predpochteniy potrebiteley [The method of joint analysis as a tool for studying consumer preferences]. Sociology. (28). 5-28. (in Russian).
Zolotareva Yu.V. (2009). Analiz potrebitelskikh predpochteniy na regionalnom rynke turizma i gostepriimstva [Analysis of consumer preferences in the regional tourism and hospitality market]. Russian Entrepreneurship. 10 (12). 169-174. (in Russian).

Tel : +7 495 649 6241

Fax : +7 800 3331538

E-mail : bgscience@idbg.ru

Address : RUSSIA, 101000, Moscow, Myasnitskaya st. 13-2

BIBLIO-GLOBUS Science

BIBLIO-GLOBUS Science - one of the leading science publishers in Russia.

Read More
Other sites
  • BIBLIO-GLOBUS fiction
  • BIBLIO-GLOBUS bookstore
  • National Science Publishing Association (NATSPA)
© 2016 BIBLIO-GLOBUS Science (BIBLIO-GLOBUS Publishing House). All Rights Reserved