bgscience@idbg.ru
+7 495 648 62 41 Russia, 127015, Moscow, Novodmitrovskaya st. 5A (b. 7)
Menu
  • BIBLIO-GLOBUS
    • About
  • Journals
    • Russian Journal of Entrepreneurship
    • Creative Economy
    • Scholarly Communication Review
    • Russian Journal of Retail Management
    • Leadership and Management
    • Public-Private Partnership
    • Global Markets and Financial Engineering
    • Russian Journal of Housing Research
    • Food Policy and Security
    • Russian Journal of Labor Economics
    • Russian Journal of Innovation Economics
    • Journal of Economics, Entrepreneurship and Law
    • Russian Journal of Humanistic Psychology
  • BIBLIO-GLOBUS fiction

Switch to Russian:to Russian

Intelligent data analysis in the management of production systems (approaches and methods)


Mylnikov L.A., Krause B., Kutz M., Bade K., Shmidt I.A.
(about the authors)

Mylnikov Leonid – Candidate of Science, Engineering, Associate Professor, Perm National Research Polytechnic University (Perm National Research Polytechnic University)

Krause Bernd – Dr., Anhalt University of Applied Sciences (Anhalt University of Applied Sciences)

Kutz Martin – Professor, Anhalt University of Applied Sciences (Anhalt University of Applied Sciences)

Bade Corina – Professor, Anhalt University of Applied Sciences (Anhalt University of Applied Sciences)

Shmidt Igor – Candidate of Science, Engineering, Associate Professor, Perm National Research Polytechnic University (Perm National Research Polytechnic University)

Monograph:
ISBN: 978-5-9500501-7-6
Format: 60х84/16
Amount: 500
Publisher: BIBLIO-GLOBUS Publishing House


Keywords: data preparation, DataMining, forecast, management parameters, production systems management, project management, risk assessment, statistics, time series, training




Citation:



Share:

Abstract:

The relevance of this study is related to the increasing role of prognostic models in the management of production systems, which is associated with the increased requirements for management efficiency and the need to take into account external factors affecting the system and the consideration of ongoing processes in dynamics and in interconnection between the chain of managerial decisions and the values of the used management parameters. The goal of the study is the solution of scientific and practical problem of the development of models and supporting methods for the effective decision-making in the management of project implementation processes in production systems on the basis of the data analysis of the life circle of projects, of their interaction with other projects within the framework of the system under consideration and taking into account the time factor. In order to gain this goal we use methods of innovation management from the point of performance management indicators; formalization of management tasks in the form of predictive models; DataMining for intellectual data analysis and support for decision-making management; predicting the parameter values presented in the form of time series and the application of time series as a way of representing the process parameters under study; approaches from a wide field of semi-supervised training, taking into account structured and unstructured data at the same time; methods for assessing the credibility of taken management decisions. The data considered in the monograph allow to receive and to solve the tasks of the management of production systems arising in the practice based on the forecast data for sets of indicators and parameters involved in decision-making. That makes it possible to increase the validity and quality of management decisions.








References:
1. Ackermann T. IT Security Risk Management. — Wiesbaden: Springer Fachmedien, 2013.
2. Aggarwal C. C. Data Mining: The Textbook. — 1st edition. — Springer, 2015. — ISBN 978-3319141411. — DOI: 10.1007/9783-319-47578-3. 3. Aggarwal C. C.OutlierAnalysis.—2ndedition.—Springer,2017.— ISBN 978-3-319-47577-6, 978-3-319-47578-
3. — DOI: 10.1007/9783-319-47578-3.
4. Allen M.,Cervo D.MasterDataManagementinPractice:Achieving True Customer MDM. — 1st edition. — Wiley Publishing, 2011. — ISBN 0470910550, 9780470910559.
5. Allen M., Cervo D. Multi-Domain Master Data Management: Advanced MDM and Data Governance in Practice. — 1st edition. — San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2015. — ISBN 0128008350, 9780128008355.
6. Alpaydin E. Introduction to Machine Learning. — 2nd edition. — MIT, 2010. — ISBN 026201243X, 9780262012430.
7. Amberg M., Mylnikov L. Innovation project lifecycle prolongation method // Innovation and knowledge management in twin track economies: challenges & solutions. — 2009. — №1–3. — Pp. 491– 495.
8. Anderson J. A. Discrete mathematics with combinatorics. — Prentice Hall, 2001.
9. Atkinson W. I. Nanocosm nanotechnology and the big changes coming from the inconceivably small. — New York: Amacom, 2004. — ISBN 978-0-8144-2772-9.
10. Bade K. Personalized Hierarchical Structuring. — Sierke, 2009.
11. Basu S., Banerjee A., Mooney R. Active Semi-Supervision for Pairwise Constrained Clustering // Proceedings of the 2004 SIAM International Conference on Data Mining (SDM’04). — 2004.
12. Basu S., Davidson I., Wagstaff K. Constrained Clustering: AdvancesinAlgorithms,Theory,andApplications. —1sted.—Chapman & Hall/CRC, 2008.
13. Bilenko M., Basu S., Mooney R. Integrating Constraints and Metric Learning in Semi-Supervised Clustering // Proceedings of the twenty-first international conference on Machine learning (ICML’04). — 2004.
14. Blum A.,Chawla S.Learningfromlabeledandunlabeleddatausing graph mincuts // Proceedings of the 18th International Conference on Machine Learning. — 2001.
15. Brown M. G., Svenson R. A. Measuring R&D Productivity // Research & Technology Management. — 1998. — Vol. 41. — №6. — Pp. 30–35.
16. Buchmann J. Valuing the Innovation Potential of Firms. — Wiesbaden: Springer Fachmedien, 2015.
17. Burke E. K., Landa S. J. D., Soubeiga E. Hyperheuristic Approaches for Multiobjective Optimization // Proceeding of the MIC’2003. — Kyoto, Japan, 2003.
18. Cheboli D. Anomaly Detection of Time Series. — Facility Of The Graduate School Of The University Of Minnesota, 2010. — P. 75.
19. Chizi B.,Maimon O.DimensionReductionandFeatureSelection// Data Mining and Knowledge Discovery Handbook. — 2nd ed. — Springer Science, Business Media, 2010. — Pp. 83–100. — DOI: 10.1007/978-0-387-09823-4_5.
20. Collopy F., Armstrong J. S. Rule-Based Forecasting: Development and Validation of an Expert Systems Approach to Combining Time Series Extrapolations // Management Science. — 1992. — Vol. 38. — №10. — Pp. 1394–1414. — ISSN 0025-1909, 1526-5501. — DOI: 10.1287/mnsc.38.10.1394.
21. Damij N., Damij T. Process Management. — Berlin Heidelberg: Springer, 2014.
22. Data Mining and Knowledge Discovery Handbook / ed. by O. Maimon, L. Rokach. — 2nd edition. — Springer Science, Business Media, 2010. — ISBN 978-0-387-09822-7.
23. DeMarco T. Controlling Software Projects. — Yourdon Press, 1982.
24. Demartini C. Performance Management Systems. — Berlin, Heidelberg: Springer, 2014.
25. Engel E., Huettenberger L., B.H.ASurveyofDimensionReduction Methods for High-dimensional Data Analysis and Visualization // Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering - Proceedings of IRTG1131Workshop2011. Vol.27/ed.byC.Garth,A.Middel,H. Hagen. —Dagstuhl,Germany: SchlossDagstuhl–Leibniz-Zentrum fuer Informatik, 2012. — Pp. 135–149. — (OpenAccess Series in Informatics (OASIcs)). — ISBN 978-3-939897-46-0. — DOI: http: //dx.doi.org/10.4230/OASIcs.VLUDS.2011.135.
26. Esposito F. P.MultipleHypothesisTestingofMarketRiskForecasting Models: MHT of Market Risk Forecasting Models // Journal of Forecasting. — 2016. — Vol. 35. — №5. — Pp. 381–399.
27. Faloutsos C., Ranganathan M., Manolopoulos Y. Fast Subsequence Matching in Time-Series Databases // Proceedings of the ACM SIGMOD Conference on Management of Data. — 1994.
28. Foster R. N. [et al.] Improving the Return on R&D - II // Research Management. — 1985. — Vol. 28. — №2. — Pp. 13–23.
29. Gadatsch A. Grundkurs Geschaeftsprozessmanagement (Basic Course Business Process Management). — 6th ed. — Wiesbaden: Vieweg, Teubner, 2008.
30. Gantt H. Organizing for Work. — New York: Harcourt Brace, Howe, 1919.
31. Gantt H., Forrer D. Organizing for work / ed. by D. A. Forrer. — Florida: Donald A. Forrer, 2006. — ISBN 978-0-9779157-0-5.
32. Geunes J., Taaffe K., Romeijn H. E. Models for integrated production planning and order selection // Proceedings of the 2002 Industrioal Engineering Research Conference (IERC). — Orlando, 2002.
33. Gisbrecht A., B. H. Data visualization by nonlinear dimensionality reduction // WIREs Data Mining and Knowledge Discovery. — 2015. — Vol. 5. — №2. — Pp. 51–73.
34. Graham W. [et al.] A Comparative Study of RNN for Outlier Detection in Data Mining // Proceedings of the 2002 IEEE InternationalConferenceonDataMining. —Washington,DC,USA: IEEE ComputerSociety, 2002. —P.709. —(ICDM’02). —ISBN0-76951754-4.
35. Guyon I., Elisseeff A. An Introduction to Variable and Feature Selection // Journal of Machine Learning Research. — 2003. — Vol. 3. — Pp. 1157–1182.
36. Hemada B., Lakshmi V. K. S. A Study On Discretization Techniques // International Journal of Engineering Research and Technology. — 2013. — Vol. 2. — №8. — Pp. 1887–1892.
37. Irad B. G. Outlier Detection // Data Mining and Knowledge Discovery Handbook. — 2nd ed. — Springer Science, Business Media, 2010. — Pp. 1–16. — DOI: 10.1007/978-0-387-09823-4_5.
38. Jaszkiewicz A. Genetic local search for multi-objective combinatorial optimisation // European Journal of Operational Research. — 2002. — №137.
39. Jiawei H., Micheline K., Jian P. Data mining concepts and techniques. — 3rd ed. — San Francisco, CA, USA: Morgan Kaufmann, 2012. — ISBN 0123814790.
40. Jose., Goyal P., Aggrwal P. Local deep kernel learning for efficient non-linear SVM prediction // Proceedings of the International Conference on Machine Learning. — Atlanta, Georgia, USA, 2013. — Pp. 486–494.
41. Kaschny M., Nolden M., Schreuder S. Innovationsmanagement im Mittelstand (Innovation Management in Small and Medium-Siyed Businesses). — Wiesbaden: Springer, 2015.
42. Kaski S., Peltonen J. Dimensionality Reduction for Data Visualization//SignalProcessingMagazine. —2011. —Vol.3.—№100. — Pp. 100–104.
43. Kerssens van Drongelen I. C., Cook A. Design PPrinciples for the Development of Measurement Systems for Research and Development Processes // R&D Management. — 1997. — Vol. 27. — №4. — Pp. 345–357.
44. Kim W. Y. [et al.] A Taxonomy of Dirty Data // Data Mining and Knowledge Discovery. — 2003. — Vol. 7. — №1. — Pp. 81–99.
45. Kosko B. Fuzzy cognitive maps // International Journal of ManMachine Studies. — 1986. — Vol. 24. — №1. — Pp. 65–75. — ISSN 00207373. — DOI: 10.1016/S0020-7373(86)80040-2.
46. Kotsiantis S.,Kanellopoulos D.DiscretizationTechniques: Arecent survey // GESTS International Transactions on Computer Science and Engineering. — 2006. — Vol. 32. — №1. — Pp. 47–58.
47. Kuetz M. IT-Prozesse mit Kennzahlen steuern (To manage IT Processes with Performance Iindicators) // Controlling & Management Review. — 2014. — Vol. Sonderheft 1. — Pp. 76–79.
48. Kuster J. [et al.] Project Management Handbookbook. — 1st english. — Berlin Heidelberg: Springer, 2015.
49. Lemire D., Maclachlan A. Slope One Predictors for Online RatingBased Collaborative Filtering // SIAM Data Mining (SDM’05), Newport Beach, California, April 21–23. — 2005.
50. Lintner J. The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets // Review of Economic and Statistic. — 1965. — Vol. 13 (47).
51. Lloyd S. Measures of Complexity. — web.mit.edu/esd.83/ www/notebook/complexity.pdf.
52. Maletic J. I., Marcus A. Data cleansing: A Prelude to Knowledge Discovery // Data Mining and Knowledge Discovery Handbook. — 2nd ed. — Springer Science, Business Media, 2010. — Pp. 19–32.
53. Markowitz H.PortfolioSelection//JournalofFinance. —1952. — Vol. 7 (77).
54. Markowitz H. Portfolio selection: efficient diversification of investments. — New Haven: Yale University, 1970.
55. McCabe T. J.AComplexityMeasure//IEEETransactionsonSoftware Engineering. — 1976. — Vol. SE–2. — №4. — Pp. 308–320.
56. Miller S. L., Childers D. Probability and Random Processes. — Burlington, San Diego, London: Elsevier, 2004.
57. Mitchell T. Machine learning. — McGraw Hill, 1997.
58. Moeller K., Schulze W., Steinmann J. C. Innovationssteuerung durch entscheidungsrelevante Informationen (Control of innovation with decision relevant information) // Business Innovation: Das St. GallerModell/ed.byC.P.Hoffmann[etal.]. —Springer, 2016. — Chap. 10. Pp. 141–162.
59. Mossin J. Equilibrium in a Capital Asset Market // Econometrica. — 1966. — Vol. 34. — №4. — P. 768. — ISSN 00129682. — DOI: 10.2307/1910098.
60. Equilibrium in a Capital Asset Market. — 1966. — Vol. 34 (768).
61. Mylnikov L. A. A system view of the problem of the modeling and control of production innovations // Scientific and Technical Information Processing. — 2012. — Vol. 39. — №2. — Pp. 93–106.
62. Mylnikov L., Amberg M.TheForecastingofInnovationProjectsParameters // 21st International-Business-Information-ManagementAssociation Conference on Vision 2020: Innovation, Development Sustainability, and Economic Growth. — 2013. — Vol. 1–3. — Pp. 1017–1029.
63. Oestereich B., Weiss C. APM - Agiles Projektmanagement (Agile Project Management). — Heidelberg: DPunkt, 2008.
64. Orair G. H. [et al.] Distance-Based Outlier Detection: Consolidation and Renewed Bearing // PVLDB. — 2010. — Vol. 3. — №2. — Pp. 1469–1480.
65. Oslo Manual: Guidelines for Collecting and Interpreting Innovation Data / pod red. OECD, Eurostat. — OECD / European Communities, 2005.
66. Palmer R., Cockton J., Cooper G. Managing marketing. — Amsterdam: Butterworth-Heinemann, 2007.
67. Parviainen E. Studies on dimension reduction and feature spaces. — 1st ed. — Lääketieteellisen tekniikan ja laskennallisen tieteen laitos: Aalto University publication series doctorial dissertations, 2011. — ISBN 978-952-60-4312-8, 978-952-60-4311-1.
68. Power D. J. Understanding Data-Driven Decision Support Systems // Information Systems Management. — 2008. — Vol. 25. — №2. — Pp. 149–154. — DOI: 10.1080/10580530801941124.
69. Pyle D. Data Preparation for Data Mining. — 1st ed. — San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999. — ISBN 1558605290, 9781558605299.
70. Riemer K., Sciefleet P. Enterprise social networking in knowledgeintensive work practices: A case study in a professional service firm // Proceedings of the 23rd Australasian Conference on Information Systems 2012. — 2012. — Pp. 1–12.
71. Schema Design for Time Series Data in MongoDB. — URL: https: //www.mongodb.com/blog/post/schema-design-for-timeseries-data-in-mongodb.
72. Scott E. J. Idea-to-Launch (Stage-Gate) Model: An Overview. — 2015. — www.stage-gate.com.
73. Semi-supervised Learning / ed. by O. Chapelle, B. Schoelkopf, A. Zien. — MIT, 2006.
74. Sharpe W. F.CapitalAssetPrices: ATheoryofMarketEquilibrium under Conditions of Risk // Journal of Finance. — 1964. — Vol. 19 (425).
75. Shmidt I. Data in the Trial of Complex Technical Products // Proceedings of International Conference on Applied Innovation in IT. — HS Anhalt, 2014. — Pp. 85–87.
76. Suslova A.,Mylnikov L.,Krause B.Prognosticmodelforestimation of innovative activity factors of regions by example of the patenting data based on cognitive map modeling // European Researcher. — 2013. — Vol. 61. — №10. — Pp. 2508–2517.
77. Syswerda G.Uniformcrossoveringeneticalgorithms//Proceedings of the Third International Conference on Genetic Algorithms / ed. by J. D. Schaffer. — Morgan Kaufmann, 1989. — Pp. 2–9.
78. Taylor F. The Principles of Scientific Management. — 1911.
79. Time Series, metriki i statistika: znakomstvo s InfluxDB tutorial. Blog kompanii Selektel, 1 dekabrya 2014. — URL: https://habrahabr.ru/company/selectel/blog/245515/.
80. Timmons J. A., Spinelli S. New venture creation: entrepreneurship for the 21st century. — Boston: McGraw-Hill, 2007.
81. Van den Heuvel W. [et al.] Integrated market selection and productionplanning: complexityandsolutionapproaches//Mathematical Programming. — 2012. — Vol. 134. — №2. — Pp. 395–424. — DOI: 10.1007/s10107-011-0441-7.
82. Vanini U. Risikomanagement: Grundlagen, Instrumente, Unternehmenspraxis. — Stuttgart: Schaeffer-Poeschel, 2012.
83. Voigt K.-I. Industrielles Management. — Springer, 2008. — P. 695.
84. Wagstaff K. [et al.] Constrained k-means clustering with background knowledge // Proceedings of 18th International Conference on Machine Learning. — 2001. — Pp. 577–584.
85. Wittgenstein L. Tractatus Logico-Philosophicus. — New York: Kegan P., 1922.
86. Xiaojin Z. Semi-Supervised Learning With Graphs. — Carnegie Mellon University, 2005.
87. Xiaojin Z. [et al.] Humans Perform Semi-supervised Classification Too // Proceedings of the 22nd National Conference on Artificial Intelligence. — Vol. 1. — AAAI, 2007. — Pp. 864–869.
88. YAWNDB — time series baza dannyh. Blog kompanii Selektel, 1 aprelya 2014. — URL: https://habrahabr.ru/company/ selectel/blog/217801/comment_7468965.
89. Young H. P. The Evolution of Conventions // Econometrica. — 1993. — Vol. 61. — №1. — P. 57. — ISSN 00129682. — DOI: 10.2307/2951778.
90. Z. X. Semi-Supervised Learning Literature Survey: tekh. otch. / University of Wisconsin-Madison. — 2008.
91. Ziemba P., Piwowarski M. Feature selection methods in data mining techniques // Prace Naukowe Uniwersytetu Ekonomicznego we Wrocawiu. — 2011. — Vol. 206. — Pp. 213–223.
92. Abdullaev A. R., Mylnikov L. A., Vasileva E. E. O riskakh v innovatsionnyh proektakh: prichiny poyavleniya, integralnye riski, ekspertiza proektov s uchetom riskov // Ekonomicheskiy analiz: teoriya i praktika. — 2012. — №40 (295). — S. 41–49.
93. Alekseev V. I. Analiz i prognozirovanie tsiklicheskikh vremennyhryadovsispolzovaniemveyvletovineyrosetevyhnechetkikh pravil vyvoda // Vestnik Yugorskogo gosudarstvennogo universiteta. — 2013. — №3 (30). — S. 3–10.
94. Anderson T. Statisticheskiy analiz vremennyh ryadov. — M.: Mir, 1976.
95. Batischeva S. E., Kadaner E. D., Simonov P. M. Matematicheskie modeli mikroekonomiki. — Permy: Permskiy gosudarstvennyy universitet, 2006.
96. Benker K. MongoDB v deystvii = MongoDB in Action. — DMK, 2014.
97. Vasilev F. P. Metody optimizatsii. — M.: Faktorial Press, 2002.
98. Venttsel E. S. Teoriya veroyatnostey. — M.: Vysshaya shkola, 1989.
99. Glovatskaya A. P. Metody i algoritmy vychislitelnoy matematiki. — M.: Radio i svyaz, 1999.
100. Goloschapov E. S.,Potekhin V. V.Optimalnoekhranenievremennyh ryadov // Materialy nauchno-prakticheskoy konferentsii c mezhdunarodnym uchastiem. — Institut informatsionnyh tekhnologiy i upravleniya, Sankt-Peterburgskiy politekhnicheskiy universitet Petra Velikogo, 2014.
101. Gurevich I. M. Zakony informatiki - osnova stroeniya i poznaniya slozhnyh sistem. — M.: TORUS PRESS, 2007.
102. Deyt K. D. Vvedenie v sistemy baz dannyh = Introduction to Database Systems. — 8-e izdanie. — M.: Vilyams, 2005.
103. Evstratov E. N., Mylnikov L. A., Stolbov V. Yu. Opredelenie grupp produktsii dlya sovmestnogo vypuska na osnove statisticheskogo analiza prodazh // Teoriya aktivnyh sistem: trudy mezhdunarodnoy nauchno-prakticheskoy konferentsii «Upravlenie bolshimi sistemami». — M.: IPU RAN, 2011. — S. 143– 148.
104. Eremeevskiy A. A.,Khanov V. Kh.Metodpoiskazadannogoshablona vo vremennom ryadu // Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva. — 2010. — №4.
105. Zhirnov V. I. Intellektualnaya podderzhka protsessa obyemnogo planirovaniya diskretnogo proizvodstva pri nechetkikh ogranicheniyakh na resursy predpriyatiya i menyayuscheysya konyyunkture rynka: Diss. na soiskanie uchenoy stepeni kand. tekhn. nauk. — Permy: Permskiy natsionalnyy issledovatelskiy politekhnicheskiy universitet, 2009.
106. Kogalovskiy V. Proiskhozhdenie ERP // Direktor informatsionnoy sluzhby. — 2000. — №5.
107. Kremera N. Sh. Issledovanie operatsiy v ekonomike. — M.: Banki i birzhi, YuNITI, 1997.
108. Krivonosova E. K., Pervadchuk V. P., Krivonosova E. A. Sravnenie fraktalnyh kharakteristik vremennyh ryadov ekonomicheskikh pokazateley // Sovremennye problemy nauki i obrazovaniya. — 2014. — №6.
109. Molorodov Yu. I., Shirshov P. E. Informatsionnovychislitelnaya sreda dlya khraneniya i obrabotki vremennyh ryadov dannyh nablyudeniy // Interekspo Geo-Sibir. — 2010. — T. 4. — №2.
110. Mordvinov I. V. Khranenie, analiz i prognozirovanie vremennyh ryadov v relyatsionnyh SUBD // Molodezhy i nauka: Sbornik materialov VII Vserossiyskoy nauchno-tekhnicheskoy konferentsii studentov, aspirantov i molodyh uchenyh, posvyaschennoy 50-letiyu pervogo poleta cheloveka v kosmos. — Krasnoyarsk: Sibirskiy federalnyy universitet, 2011.
111. Mylnikov L. A., Trushnikov D. N. Modelirovanie sistem: praktikum (uchebnoe posobie po kursu «Modelirovanie sistem»). — Permy: PGTU, 2006.
112. Namiot D. E. Bazy dannyh vremennyh ryadov i sredstva obrabotki // Materialy 4-y Nauchno-prakticheskoy konferentsii «Aktualnye problemy sistemnoy i programmnoy inzhenerii». — M.: NIU VShE, 2015.
113. Nilson N. Isskustvennyy intellekt (metody poiska resheniy). — M.: Mir, 1973.
114. Novikov F.Diskretnayamatematikadlyaprogrammistov.—SPb: Piter, 2004.
115. Prokhorov A. Yu.Algoritmy,metodyhraneniya,poiskaianaliza vremennyh ryadov v promyshlennyh SUBD. — 2001.
116. Prokhorov A. Yu. Ispolzovanie ORSUBD dlya khraneniya i analiza vremennyh ryadov // Kompyyuter Press. — 2001. — №6, 7.
117. Rassel S., Norvig P. Iskusstvennyy intellekt: sovremennyy podkhod. — M.: Vilyams, 2006.
118. Sergienko A. B. Tsifrovaya obrabotka signalov. — SPb: Piter, 2002.
119. Fayzrakhmanov R. A. [i dr.] Metodika opredeleniya i utochneniya znacheniy koeffitsientov svyazey kognitivnyh kart na primere analiza vzaimosvyazi obyemov finansirovaniya nauchnyh issledovaniy i patentnoy aktivnosti // Ekonomicheskiy analiz: teoriya i praktika. — 2013. — №30 (333). — S. 43–51.
120. Fauler M., Pramodkumar D. S. NoSQL: novaya metodologiya razrabotki nerelyatsionnyh baz dannyh = NoSQL Distilled. — M.: Vilyams, 2013.
121. Fogel L., Ouens A., Uolsh M. Iskusstvennyy intellekt i evolyutsionnoe modelirovanie. — M.: Mir, 1969.
122. Tsyganov V. V.,Borodin V. A.,Shishkin G. B.Intellektualnoe predpriyatie. — M.: Universitetskaya kniga, 2004.
123. Shabelnikov A. N., Shabelnikov V. A. Poisk anomaliy v tekhnicheskikh bazakh dannyh vremennyh ryadov // Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki. — 2008. — №4 (81). — S. 167–173.
124. Shmidt I. A., Vasenev N. V. Vybor optimalnoy JSON-modeli dlya khraneniya rezultatov ispytaniy // Fundamentalnye issledovaniya. — 2016. — №11–3. — S. 620–625.

Tel : +7 495 649 6241

Fax : +7 800 3331538

E-mail : bgscience@idbg.ru

Address : RUSSIA, 101000, Moscow, Myasnitskaya st. 13-2

BIBLIO-GLOBUS Science

BIBLIO-GLOBUS Science - one of the leading science publishers in Russia.

Read More
Other sites
  • BIBLIO-GLOBUS fiction
  • BIBLIO-GLOBUS bookstore
  • National Science Publishing Association (NATSPA)
© 2016 BIBLIO-GLOBUS Science (BIBLIO-GLOBUS Publishing House). All Rights Reserved