bgscience@idbg.ru
+7 495 648 62 41 Russia, 127015, Moscow, Novodmitrovskaya st. 5A (b. 7)
Menu
  • BIBLIO-GLOBUS
    • About
  • Journals
    • Russian Journal of Entrepreneurship
    • Creative Economy
    • Scholarly Communication Review
    • Russian Journal of Retail Management
    • Leadership and Management
    • Public-Private Partnership
    • Global Markets and Financial Engineering
    • Russian Journal of Housing Research
    • Food Policy and Security
    • Russian Journal of Labor Economics
    • Russian Journal of Innovation Economics
    • Journal of Economics, Entrepreneurship and Law
    • Russian Journal of Humanistic Psychology
  • BIBLIO-GLOBUS fiction

Switch to Russian:to Russian

Analysis of the variety of architectures and methods for modeling of decentralized systems based on the agent-oriented approach


Burilina М.А., Akhmadeev B.A.
(about the authors)

Burilina Mariya А. – Researcher (Central Economics and Mathematics Institute of the Russian Academy of Sciences)

Akhmadeev Bulat A. – Researcher (Central Economics and Mathematics Institute of the Russian Academy of Sciences)

Published in:
Creative Economy
– Volume 10, Number 7 (July 2016)

JEL classification: C45, C55, C63

Keywords: agend-based models, architecture of agent, artificial society, behavior of agents, logical algorithms, mathematical modeling of agents' behavior, neuron networks


Citation:
Burilina М.А., Akhmadeev B.A. (2016). Analysis of the variety of architectures and methods for modeling of decentralized systems based on the agent-oriented approach. Creative Economy, 10(7), 829–848. doi: 10.18334/ce.10.7.35364


Share:

Abstract:

The article gives the methodology for building of the artificial intelligence, agents and hybrid agend-based models using neuron networks that allow to negotiate disadvantages of known methods for mathematical formalization of behavior of micro-level agents. The authors have developed the detailed review of learning and non-learning agents, have mathematically described approaches to design of interrelations between agents in the network and have suggested classifiers for artificial intelligence. This work may be useful for development of optimization models based on methods for simulating computer modeling, neuron networks as well as for building of decentralized agend-based models of social systems.








References:
1. Xie X. L., Beni G. A validity measure for fuzzy clustering // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 1991. – Vol. 13. – № 8. – P. 841-847. – doi: 10.1109/34.85677
2. Parsopoulos K.E., Vrahatis M.N. Recent approaches to global optimization problems through Particle Swarm Optimization // Natural Computing. – 2002. – Vol. 1. – № 2. – P. 235-306. – doi: 10.1023/A:1016568309421
3. Kennedy J., Eberhart R. Particle Swarm Optimization // Proceedings of IEEE International Conference on Neural Networks. – 1994. – Vol. 4. – P. 1942-1948. – doi: 10.1109/ICNN.1995.488968
4. Dorigo M., Gambardella L. M. Ant colony system: a cooperative learning approach to the traveling salesman problem // IEEE Transactions on Evolutionary Computation. – 1997. – Vol. 1. – № 1. – P. 53–66. – doi: 10.1109/4235.585892
5. Shah-Hosseini H. The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm // International Journal of Bio-Inspired Computation. – 2009. – Vol. 1. – № 1/2. – P. 71–79. – doi: 10.1504/IJBIC.2009.022775
6. Kazharov A.A., Kureychik V.M. Muravyinye algoritmy dlya resheniya transportnyh zadach // Izvestiya Rossiyskoy akademii nauk. Teoriya i sistemy upravleniya. – 2010. – № 1. – S. 32-45.
7. Franklin S., Graesser A. Is it an Agent, or just a Program?: A Taxonomy for Autonomous Agents // Intelligent Agents III Agent Theories, Architectures, and Languages. – Berlin: Springer Verlag, 1997. – P. 21-35. – (Lecture Notes in Computer Science, Vol. 1193).
8. Henning P. A. Computational evolution // Complexity and Artificial Markets. – Berlin, Heidelberg: Springer-Verlag, 2008. – P. 175–193. – (Lecture Notes in Economics and Mathematical Systems, Vol. 614).
9. Gardner M. Mathematical Games – The fantastic combinations of John Conway's new solitaire game "life" // Scientific American. – 1970. – № 223. – P. 120–123.
10. Galushkin A.I., Zak L.S., Tyukhov B.P. K sravneniyu kriteriev optimizatsii adaptivnyh sistem raspoznavaniya obrazov // Kibernetika. – 1970. – № 6. – S. 122-130.
11. Werbos P. J. Beyond regression: New tools for prediction and analysis in the behavioral sciences: Ph.D. thesis. – Cambridge: Harvard University, 1974. – 234 p.
12. Rumelhart D. E., Hinton G. E., Williams R. J. Learning Internal Representations by Error Propagation // Parallel Distributed Processing. Vol. 1. – Cambridge: MIT Press, 1986. – 567 p. – P. 318-362.
13. Sotnikov I.Yu., Grigoryeva I.V. Adaptivnoe povedenie programmnyh agentov v multiagentnoy kompyyuternoy igre // Vestnik Kemerovskogo gosudarstvennogo universiteta. – 2014. – № 4-2. – S. 65-71.
14. Masloboev A.V. Gibridnaya arkhitektura intellektualnogo agenta s imitatsionnym apparatom // Vestnik Murmanskogo gosudarstvennogo tekhnicheskogo universiteta. – 2009. – T. 12. – № 1. – S. 113-124.
15. Bratman M. E. Intentions, Plans, and Practical Reason. – Cambridge: Harvard University Press, 1987. – 146 p.
16. Khaykin S. Neyronnye seti: polnyy kurs. – 2-e izd. – M.: ID «Vilyams», 2006. – 1104 s.
17. Romanov V.P., Badrina M.V. Informatsionnye tekhnologii modelirovaniya finansovyh rynkov. – M.: Finansy i statistika, 2010. – 288 s.
18. Social Self-Organization. – Berlin, Heidelberg: Springer-Verlag, 2012. – 454 p. – (Understanding Complex Systems).
19. Vasenkov D.V. Metody obucheniya iskusstvennyh neyronnyh setey // Kompyyuternye instrumenty v obrazovanii. – 2007. – № 1. – S. 20-29.
20. Akhmadeev B.A. Modelirovanie effektivnogo vzaimodeystviya «startapov», investorov i korporatsiy // Kreativnaya ekonomika. – 2015. – T. 9. – № 6. – S. 659-682.
21. Selyakov I.C. Opredelenie struktury mnogoagentnoy sistemy dlya modelirovaniya populyatsii zhivotnyh // Trudy SPIIRAN. – 2007. – № 4. – S. 437-444.

Tel : +7 495 649 6241

Fax : +7 800 3331538

E-mail : bgscience@idbg.ru

Address : RUSSIA, 101000, Moscow, Myasnitskaya st. 13-2

BIBLIO-GLOBUS Science

BIBLIO-GLOBUS Science - one of the leading science publishers in Russia.

Read More
Other sites
  • BIBLIO-GLOBUS fiction
  • BIBLIO-GLOBUS bookstore
  • National Science Publishing Association (NATSPA)
© 2016 BIBLIO-GLOBUS Science (BIBLIO-GLOBUS Publishing House). All Rights Reserved